

WS4694C

28-V, Over-Voltage and Over-Current Protection Load Switch with Adjustable Current-Limit Control

Descriptions

The WS4694C is a small, low RON, single channel load switch with controlled slew rate. The device operates over an input voltage range of 2.6 V to 5.5 V. The device supports current limit from 0.05 A to 2 A.

The controlled rising time of the device greatly reduces inrush current caused by large bulk load capacitance, thereby reducing or eliminating power supply drop. The WS4694C has a True Reverse-Current Blocking (TRCB) function that obstructs unwanted reverse current from VOUT to VIN during ON and OFF states. The small size and low Ron device is designed for space constrained battery powered applications. The wide input voltage range of the switch makes it a versatile solution for many different voltage rails.

The WS4694C are available in a CSP-9L package. Standard products are Pb-free and Halogen-free.

Features

Input Voltage Range: 2.6 V ~ 5.5 V

Absolute Rating at Vout: 28 V

Maximum Output current: 2.0 A

Adjustable Current Limit: 0.05 A ~ 2.0 A

1 A ~2.0 A with 15% Accuracy

True Reverse-Current Blocking (TRCB)

Under-Voltage Lockout and Thermal Shutdown

CSP-9L

Applications

- Smart Phones, Tablet PCs
- Storage, DSLRs, and other portable devices

https://ovt.com

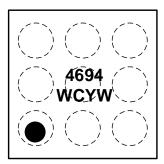


Figure 2 Marking (Top View)

4694 = Device Code

WC = Special Code

Y = Year Code

W = Week Code

Order Information

Table 1

Device	Package	Shipping
WS4694C-9/TR	CSP-9L	3000/Reel&Tape

Pin Information

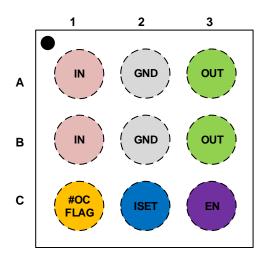


Figure 3 Pin Information (Top View)

Table 2

Pin	Symbol	Description
A3, B3	OUT	Output pin
A1, B1	IN	Input pin
A2, B2	GND	Ground
C3	EN	ON/OFF Control Input: Active HIGH
C2	ISET	Current Limit Set Input: A resistor from ISET to ground sets the current limit for the switch.
C1	#OCFLAG	Fault Output: Active LOW, open-drain output that indicates an input over current. An external pull-up resistor to VDD is required.

Jan. 2022_V1.2

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Block Diagram

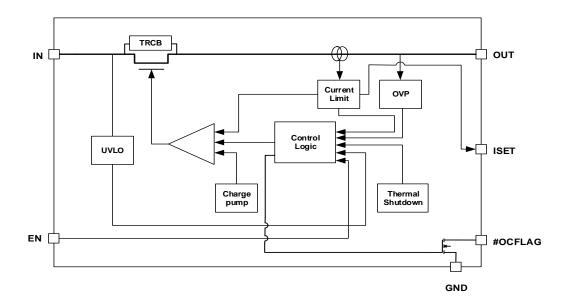
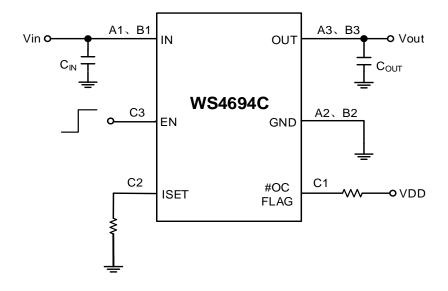



Figure 4 Block Diagram

Typical Application

Figure 5 Typical Application

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Absolute Maximum Ratings

These are stress ratings only. Stresses exceeding the range specified in <u>Table 3</u> might cause substantial damage to the device. Functional operation of the device at other conditions beyond those listed in the specification is not implied. Prolonged exposure to extreme conditions might affect device reliability.

Table 3

Parameter	Symbol	Min.	Max.	Unit
Vouт to GND, Vouт to VIN	OUT	-0.3	28	V
Other Pins to GND	IN, EN, ISET, #OCFLAG	-0.3	6	٧
Maximum Continuous Switch Current (1)	Isw	2.3		Α
Operating Junction Temperature	TJ	-40	150	°C
Storage Temperature Range	Тѕтс	-65	150	°C
Lead Temperature	T∟	260		°C
	НВМ	ţ	5	kV
ESD Botings	CDM	2		kV
ESD Ratings	Air Discharge (V _{IN} , V _{OUT} to GND) 15		5	kV
	Contact Discharge (VIN, VOUT to GND)	8	3	kV

⁽¹⁾ Maximum Junction Temperature = 85°C

Recommend Operation Ratings

The following table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications.

Table 4

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	VIN	2.6	5.5	V
Other Pins	EN, ISET, #OCFLAG	2.5	5.5	V
Operating Ambient Temperature	T _A	-40	85	°C
Thermal Resistance, R _{BJA} (CSP-9L) ⁽²⁾	R _{θJA}	110		°C/W

(2) Surface mounted on FR-4 Board using 2 oz, 1 square inch Cu area, PCB board size 1.5*1.5 square inches.

Jan. 2022_V1.2

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001 www.ovt.com

Electrical Characteristics

 $T_A = -40$ to $+85^{\circ}$ C, $V_{IN} = 2.6$ to 5.5 V, Typical values are at $V_{IN} = 5$ V and $T_A = 25^{\circ}$ C, unless otherwise noted.

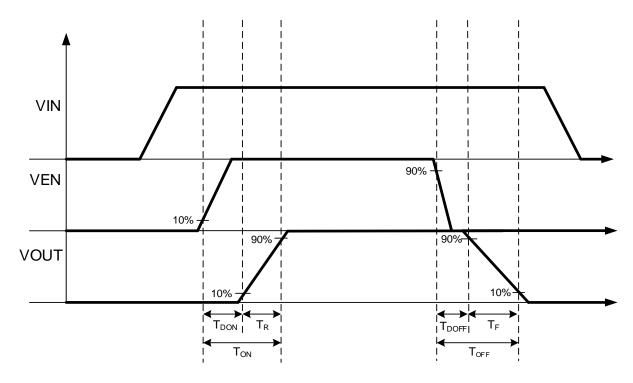
Table 5

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Basic Operation						
Input Voltage	V _{IN}		2.6		5.5	V
Quiescent Current	lα	V _{IN} = V _{EN} , V _{OUT} =Open, T _A =25°C		80	150	μA
Shutdown Current	I _{SD}	V _{IN} =5.5 V, V _{OUT} =0 V, V _{EN} =GND		0.1		μA
Off Supply Current	I _{Q(OFF)}	V _{EN} =GND, V _{OUT} =Open		1		μΑ
O. Buistana		V _{IN} =V _{EN} =5 V, I _{OUT} =1 A, T _A =25°C		75	100	
On Resistance	Ron	V _{IN} =V _{EN} =3.7 V, I _{OUT} =1 A, T _A =25°C		85	105	mΩ
EN Logic High Voltage	ViH	V _{IN} =5 V, I _{OUT} =0.1 A	1.1			V
EN Logic Low Voltage	VIL	V _{IN} =5 V, I _{OUT} =0.1 A			0.4	V
#OCFLAG Output Logic	.,	V _{IN} =5 V, I _{SINK} =10 mA		0.1	0.2	V
Low Voltage	VIL_FLAG	V _{IN} =2.6 V, I _{SINK} =10 mA		0.15	0.3	V
#OCFLAG Output Logic High Leakage Current	IFLAG_LK	V _{IN} =5 V, Switch on		0.1	1	μΑ
EN Input Leakage	I _{ON}	V _{EN} =0 V to V _{IN}			1	μΑ
Pull-Down Resistance at EN Pin	R _{EN_PD}	V _{IN} =2.6~5.5 V, V _{EN} =High TA= -40 to 85°C		14		МΩ
Over-Voltage Protection						•
Output OVD Looks at		V _{OUT} Rising Threshold	5.5	5.8	6	.,,
Output OVP Lockout	V _{OV_TRIP}	Vout Falling Threshold		5.5		V
Output OVP Hysteresis	OUTHYS			0.3		V
OVP Response Time ⁽³⁾	tovp	I _{OUT} =0.5 A, C _L =1 μF, T _A =25°C, V _{OUT} from 5.5 V to 6.0 V	1		4	μs
Over-Current Protection						
Current Limit	Luc	V _{IN} =V _{EN} =5 V, R _{SET} =1000 Ω	-5 V, R _{SET} =1000 Ω 850 1000	1150	^	
	Ішм	V _{IN} =V _{EN} =5 V, R _{SET} =500 Ω	1700	2000	2300	mA
Under-Voltage Lockout	V _{UVLO}	V _{IN} Increasing		2.4		V
	VUVLO	V _{IN} Decreasing		2.2		
UVLO Hysteresis	Vuvlo_Hys			200		mV
RCB Protection Trip Point	V _{T_RCB}	Vout - Vin		50		mV

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
RCB Protection Release Trip Point	V _{R_RCB}	Vin - Vout		50		mV
RCB Hysteresis	V _{RCB_HYS}			100		mV
Default RCB Response Time ⁽³⁾	t _{RCB}	V _{IN} =5 V, V _{EN} =High/Low		2		μs
RCB Current	I _{RCB}	V _{EN} =0 V, V _{OUT} =5.5 V		7		μΑ
Hard Over-Current Response Time ⁽³⁾	tноср	Moderate Over-Current Condition, I _{OUT} ≥ I _{LIM} , V _{OUT} =0 V		2		μs
Over-Current Response Time ⁽³⁾	tocp	Moderate Over-Current Condition, I _{OUT} ≥ I _{LIM} , V _{OUT} ≤ V _{IN}		25		μs
Over-Current Flag Response Time	toc_flag	When Over-Current Occurs to Flag Pulling LOW		8		ms
		Shutdown Threshold		150		
Thermal Shutdown	TSD	Return from Shutdown		130		°C
		Hysteresis		20		
Turn-On Delay	T _{DON}			0.8		
V _{OUT} Rise Time	T _R			0.3		ms
Turn-On Time	T _{ON}	V _{IN} =5 V, R _L =100 Ω, C _L =1 uF		1.1		
Turn-Off Delay	T _{DOFF}	R _{SET} =2000 Ω, T _A =25°C		10		
V _{OUT} Fall Time	T _F			270		μs
Turn-Off Time	T _{OFF}			280		
Turn-On Delay	T _{DON}			0.8		
Vout Rise Time	T _R			0.5		ms
Turn-On Time	Ton	V _{IN} =5 V, R _L =3.8 Ω, C _L =10 uF		1.3		
Turn-Off Delay	T _{DOFF}	R _{SET} =600 Ω , T _A =-40 to 85°C		10		
Vout Fall Time	T _F			230		μs
Turn-Off Time	T _{OFF}			240		

(3) This parameter is guaranteed by design.


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

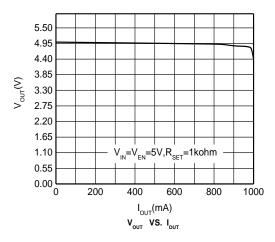
www.ovt.com

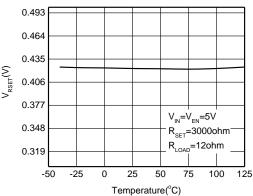
Jan. 2022_V1.2

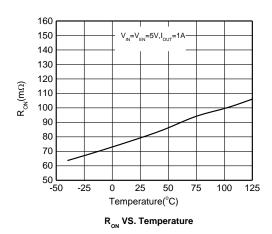
Timing Diagram

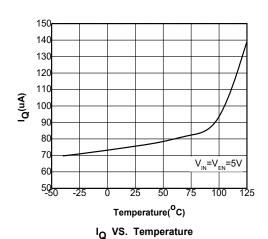
Note: $T_{ON}=T_{DON}+T_R$, $T_{OFF}=T_{DOFF}+T_F$.

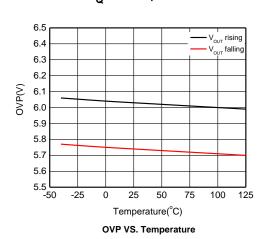
Figure 6 Timing Diagram

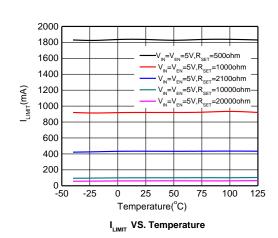

Jan. 2022_V1.2


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

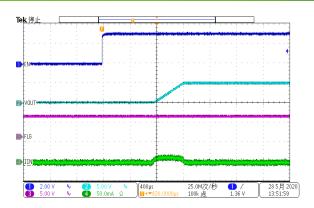

Typical characteristics

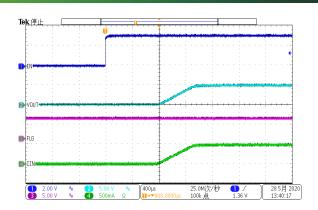

 $T_A = 25$ °C, $V_{IN} = V_{EN} = 5$ V, $C_{IN} = 1$ μ F, $C_{OUT} = 1$ μ F, unless otherwise noted.

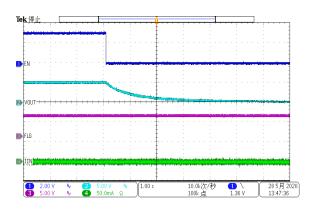


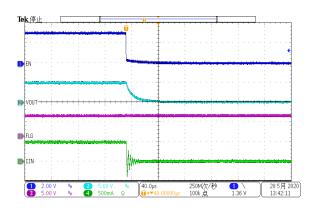


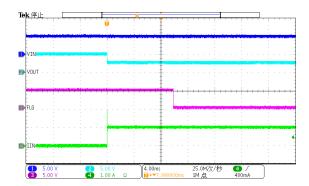
 \mathbf{V}_{RSET} VS. Temperature






OMNIVISION"


Start up by EN, $C_{IN}=C_{OUT}=1$ uF, $V_{IN}=V_{EN}=5$ V, $R_{SET}=1$ K, $I_{OUT}=0$ mA


Start up by EN, $C_{IN}=C_{OUT}=1$ uF, $V_{IN}=V_{EN}=5$ V, $R_{SET}=1$ K, $I_{OUT}=500$ mA

Shut down by EN, C_{IN} = C_{OUT} =1 uF, V_{IN} = V_{EN} =5 V, R_{SET} =1 K, I_{OUT} =0 mA

Shut down by EN, C_{IN} = C_{OUT} =1 uF, V_{IN} = V_{EN} =5 V, R_{SET} =1 K, I_{OUT} =500 mA

Current limit, CIN=COUT=1 uF, VIN=VEN=5 V, RSET=1 K, RLOAD=2.5 Ω

Application Information

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on, a capacitor needs to be placed between the VIN and the GND. Higher values of CIN can be used to further reduce the voltage drop in high-current applications.

Output capacitor

An output capacitor needs to be placed between the VOUT and the GND pin. The capacitor prevents parasitic board inductance from forcing VOUT below GND when the switch is on. The capacitor also prevents reverse inrush current from a voltage spike that could damage the device in the case of a VOUT short.

Fault Reporting

Upon the detection of an over-current, #OC_FLAG signals the fault by activating LOW.

Current Limiting

The current limit ensures that the current through the switch does not exceed the maximum set value, while not limiting the minimum value. The current at which the part's limit is adjustable through the selection of the external resistor connected to the ISET pin. Information for selecting the resistor is found in the section below. The device acts as a constant-current source when the load draws more than the maximum value set by the device until thermal shutdown occurs. The device recovers if the die temperature drops below the threshold.

Under-Voltage Lockout

The Under-Voltage Lockout (UVLO) turns off the switch if the input voltage drops below the lockout threshold. With the EN pin activated, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001

www.ovt.com

The true reverse-current blocking feature protects the input source against current flow from output to input regardless of whether the load switch is on or

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature.

Setting Current Limit

The current limit is set with an external resistor connected between the ISET and GND pins.

The current limit is calculated as the following:

$$I_{LIMIT}(A) = \frac{1000}{Rset(\Omega)}$$

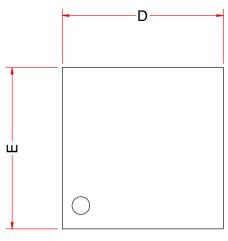
The resistor tolerance of 1% or less is recommended.

Table 6 Current Limit Settings by R_{SET}

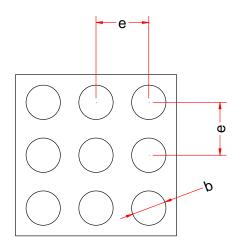
	Min.	Тур.	Max.	
$R_{SET}\Omega$	Current	Current	Current	
	Limit (mA)	Limit (mA)	Limit (mA)	
500	1700	2000	2300	
571	1490	1750	2010	
667	1275	1500	1725	
800	1065	1250	1435	
1000	850	1000	1150	
1111	750	900	1050	
1250	650	800	950	
1429	550	700	850	
1667	450	600	750	
2000	350	500	650	

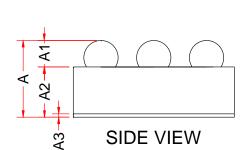
Note: Table values are based on 1% tolerance resistors.

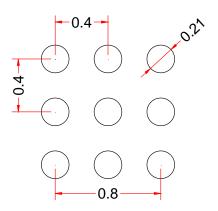
True Reverse-Current Blocking



Layout Guide


For best performance, all traces need to be as short as possible. To be the most effective, the input and output capacitors need to be placed close to the device to minimize the effect that parasitic trace inductance might have on normal and short-circuit operation. Using wide traces for VIN, VOUT, GND helps minimize parasitic electrical effects along with the case-to-ambient thermal impedance.


Package Outline Dimensions

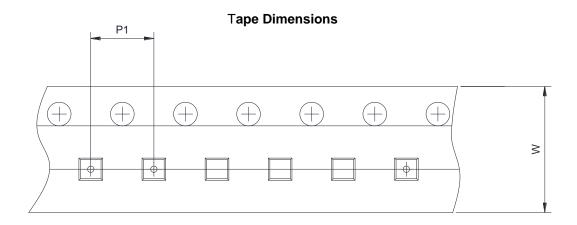

CSP-9L

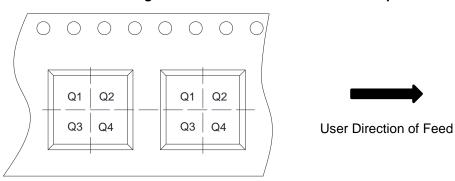
TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN(unit:mm)


Symbol	Dimensions in Millimeters				
Symbol	Min.	Тур.	Max.		
А	0.54	0.58	0.63		
A1	0.18	0.20	0.22		
A2	0.36	0.38	0.41		
A3	0.025 Ref.				
D	1.19	1.22	1.25		
Е	1.19	1.22	1.25		
b	0.24	0.26	0.28		
е	0.40 BSC				


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001


Tape And Reel Information

Reel Dimensions

Quadrant Assignments for PIN1 Orientation in the Tape

RD	Reel dimension	☑ 7inch	☐ 13inch		
W	Overall width of the carrier tape	▼ 8mm	☐ 12mm		
P1	Pitch between successive cavity centers	☐ 2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 quadrant	▼ Q1	□ Q2	□ Q3	□ Q4