

WL2848D

Low Noise, High PSRR, High Speed CMOS **LDO**

Descriptions

The WL2848D series are high accuracy, low noise, high speed, high PSRR, low dropout CMOS Linear regulators with high ripple rejection. The devices offer a new level of cost effective performance in cellular phones, laptops, notebook computers, and other portable devices.

The WL2848D series support the soft-start which prevents input inrush current. The series also have the fold-back maximum output current which depends on the output voltage. The current limit function serves both as a short circuit protection and as an output current limiter.

The WL2848D regulators are available in a standard DFN 1x1-4L package. Standard products are Pb-free and Halogen-free.

Features

Input voltage range: 1.9 V~5.5 V Output voltage range: 1.2 V~3.3 V

Output current: 300 mA

Quiescent current: typical 58 µA

Shut-down current: < 1 μA

Dropout voltage: 149 mV at I_{OUT} = 0.3 A

PSRR: 74 dB at 1 kHz, Vout = 2.8 V

Low output voltage noise: 15×Vout µVRMs

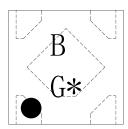
V_{OUT} accuracy: ±1.5% at V_{OUT} > 2.0 V

Recommend output capacitor: 1 µF

Thermal overload and short-circuit protection

Applications

- MP3 and MP4 players
- Cellphones, radiophones, digital cameras


www.ovt.com

- Bluetooth, wireless handsets
- Other portable electronic devices

https://www.ovt.com

Figure 1 DFN1x1-4L (Package)

B = Device code

G = Voltage code

* = Date code

Figure 2 Marking of the WL2848D15-4/TR (Top View)

For markings of other WL2848D products, see Order Information.

Order Information

Table 1

Device	Vout (V)	Package	Operation Temperature	Marking	Shipping
WL2848D12-4/TR	1.2	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
WL2040D12-4/1R	1.2	DFN IX I-4L	-40~+65 C	E*	10000
WL2848D15-4/TR	1.5	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
WL2040D15-4/1K	1.5	DFN IX I-4L	-40~+65 C	G*	10000
WL2848D18-4/TR	1.8	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D10-4/1K	1.0	DFN IX 1-4L	-40 ^{/3} +65 C	H*	10000
WL2848D22-4/TR	2.2	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D22-4/TK	2.2	DFN IX I-4L	-40~+65 C	J*	10000
WL2848D25-4/TR	2.5	DENAMA!	-40~+85°C	В	Tape and Reel,
VVL2040D25-4/TK	2.5	DFN1x1-4L	-40~+65 C	K*	10000
WL2848D27-4/TR	2.7	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D27-4/TK	2.1		-40°+65 C	Y*	10000
WL2848D28-4/TR	2.8	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D20-4/TK	2.0		-40°+65 C	L*	10000
WL2848D29-4/TR	2.9	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D29-4/11X		DI NIXI-4L	-4 0 100 C	g*	10000
WL2848D30-4/TR	3.0	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D30-4/TK	3.0	DFN IX 1-4L	-40°+65 C	M*	10000
WL2848D32-4/TR	3.2	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVLZ040D3Z-4/TR	3.2	DCIVIXI-4L	-40~+65 C	d*	10000
WL2848D33-4/TR	3.3	DFN1x1-4L	-40~+85°C	В	Tape and Reel,
VVL2040D33-4/TK	3.3	DENIXI-4L	-40/3±00 C	N*	10000

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Pin Information

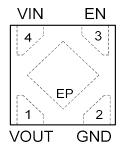
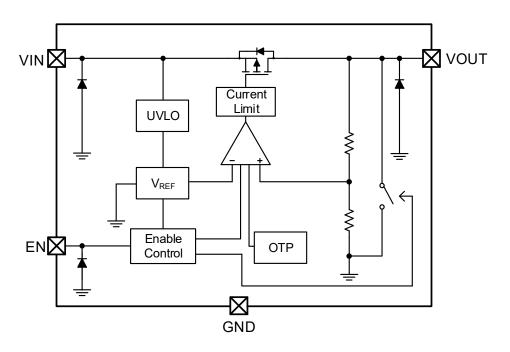


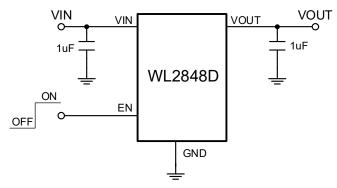
Figure 3 Pin Information (Top View)

Table 2

Pin	Symbol	Description
1	V _{оит}	Regulator output. A 1-µF or larger capacitor is required for stability.
2	GND	Ground.
3	EN	Driving the pin high turns on the regulator. Driving the pin low makes the regulator operate in the shutdown mode. The EN pin must not be left floating and needs to be connected to V_{IN} if not used.
4	Vin	Unregulated input supply. A 1-µF or larger capacitor improves source impedance, noise, and PSRR.
EP		GND level. The pin must be connected to GND.

Block Diagram




Figure 4 Block Diagram

Jul, 2022_V1.3

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Typical Applications

Figure 5 Typical Applications

Note: A 1-uF or larger capacitor is required for stability both in the input and output side. The effective capacitance needs to take the DC-Bias characteristic, tolerance and temperature into consideration.

Jul, 2022_V1.3

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Absolute Maximum Ratings

Stresses exceeding those listed in <u>Table 3</u> might damage the device.

Table 3

Parameter	Symbol	Min.	Max.	Unit
Input Voltage	V _{IN}	-0.3	6.0	V
Output Voltage	V _{OUT}	-0.3	V _{IN}	V
Enable Input Voltage	V _{EN}	-0.3	V _{IN}	V
Output Current	Іоит	Internall	y limited	Α
Lead Temperature Range	TL		260	°C
Storage Temperature Range	T _{STG}	-55	150	°C
Maximum Operating Junction Temperature Range	T _J (Max)	-55	150	°C
Moisture Sensitivity Level	MSL	Lev	Level 1	
Junction-to-ambient Thermal Resistance ^[1]	R _{θJA}	250		°C/W
ESD Capability, Human Body Model	ESD _{HBM}	2000		V
ESD Capability, Charge Device Model	ESD _{CDM}	50	00	V

^[1] Thermal resistance data is highly dependent on application and board layout. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design. Single component mounted on 2oz, 1.5*1.5 inch² FR4 PCB with 1.0*1.0 inch² Cu area.

Recommended Operation Conditions

Table 4

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltage ^[2]	V _{IN}	1.9		5.5	V
Output Voltage	Vouт	1.2		3.3	V
Output Current	l _{out}	0		300	mA
Input capacitor ^[3]	C _{IN}		1		uF
Output capacitor ^[3]	Соит		1		uF
Operating Junction Temperature	TJ	-40		125	°C
Operating Ambient Temperature Range	TA	-40		85	°C

^[2] The minimum input voltage needs to be larger than (V_{OUT}+V_{DROP}) or 1.9 V, whichever is greater.

^[3] The recommended capacitor is 1 uF or larger when considering stability.

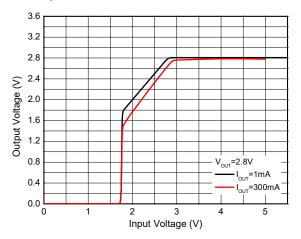
Electrical Characteristics

Over T_A from -40°C to +85°C, $V_{IN}=V_{OUT}+1$ V, $V_{EN}=V_{IN}$, $I_{OUT}=1$ mA, $C_{IN}=1$ μF , $C_{OUT}=1$ μF , unless otherwise noted. Typical values are at $T_A=25$ °C.

Table 5

Parameter	Symbol		Condition		Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}				1.9		5.5	V
Input Under Voltage	\/ LI\/I O	Rising, I _{OUT} =	=1 mA (design o	guarantee)	1.66	1.75	1.84	V
Lockout	V _{IN} UVLO	Falling, lour	T=1 mA (design guara t=1 mA (guarantee)	1.55	1.64	1.73	V
Output Voltage Accuracy	Vоит		V _{OUT} ≤2.0 V	-30		30	mV	
			,	V _{OUT} >2.0 V	-1.5		1.5	%
			` ′	V, I _{OUT} =300		130	200	
Drangut Voltage	\\	V _{OUT} =0.98		V, I _{OUT} =300		141	212	m)/
Dropout Voltage	VDROP	×Vouт(NOM) Vouт(NOM)=2.8 V, Iouт=300 mA		149	223	mV		
			` '	V, I _{OUT} =300		228	355	
Line Regulation	$\triangle V_{LINE}$	V _{OUT} +1 V≤'	V _{IN} ≤5.5 V, I _{OUT}	=1 mA		1	6	mV
Load Regulation	$\triangle V_{Load}$	V _{IN} =V _{OUT} +1	V, Iout=1 mA~3	300 mA		22	39	mV
Quiescent Current	Iq	I _{OUT} =0 mA				58	105	μA
Shut-down Current	I _{SHDN}	V _{EN} =0 V, 1.9	V _{EN} =0 V, 1.9 V≪V _{IN} ≪5.5 V				1.0	μA
Output Current Limit	IcL	V _{OUT} =0.85×¹	V _{OUT(NOM)} , V _{IN} \geq	≥V _{OUT(NOM)} +1		700		mA
Short Current	Ishort	VEN=VIN, VOL	л short to GND			140		mA
						73		dB
Daniel Oranie Daie die		V _{IN} =(V _{OUT} +1	V) _{DC} +0.5V _{P-P}	f=1 kHz		74		dB
Power Supply Rejection	PSRR	I _{оит} =10 mA,	V _{OUT} =2.8 V,	f=10 kHz		69		dB
Rate		C _{IN} =0 uF, C _{OUT} =1 uF		f=100 kHz		56		dB
				f=1 MHz		58		dB
EN Logic High Voltage	V _{ENH}	V _{IN} within its	range	1	0.82			V
EN Logic Low Voltage	V _{ENL}	V _{IN} within its	range				0.4	V
EN Input Current	I _{EN}	V _{EN} =V _{IN} =5.5	5 V			0.5		μA
Output Noise Voltage	емо	V _{IN} =V _{OUT} +1 10 Hz to 100		_{ОUT} =100 mA,		15× Vоит		μV _{RMS}
Thermal Shutdown Threshold	T _{SD}				160		°C	
Thermal Shutdown hysteresis	ΔT _{SD}				30		°C	
Output Auto-discharge Resistance	R _{LOW}	V _{IN} =V _{OUT} =4	V, V _{EN} =0 V			240		Ω

6


Parameter	Symbol	Condition			Тур.	Max.	Unit
		From assertion of EN	V _{OUT} =2.8 V		1.0	2.00	
Turn-On Time	ne Ton signal to 90% V _{OUT(NOM)} , C _{IN} =1 uF, C _{OUT} =1 uF,	V _{OUT} =1.8 V		0.8	1.82	ms	
		Cin=1 uF, Cout=1 uF,	V _{OUT} =1.2 V		0.7	1.52	
Vout fro		V _{OUT} from 10% to 90%	V _{OUT} =2.8 V		320		
V _{OUT} Rise Time	Trise	Vout(NOM), CIN=COUT=1 uF,	V _{OUT} =1.8 V		180		us
		I _{OUT} =1 mA, V _{IN} =V _{OUT} +1 V	V _{OUT} =1.2 V		100		

Jul, 2022_V1.3

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Typical characteristics

At V_{OUT} =2.8 V, V_{IN} = V_{OUT} +1 V or 1.9 V (whichever is greater), I_{OUT} =1 mA, C_{IN} =1 μ F, C_{OUT} =1 μ F, V_{EN} =2.2 V and T_J =25°C, unless otherwise noted.

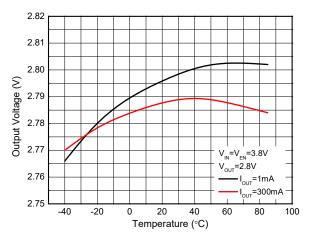


Figure 6 Output Voltage vs. Input Voltage

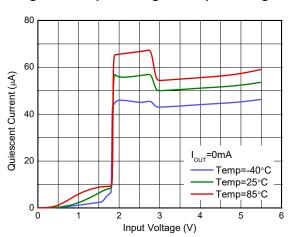


Figure 7 Output Voltage vs. Temperature

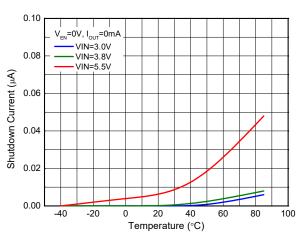


Figure 8 Quiescent Current vs. Input Voltage

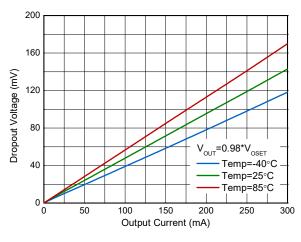


Figure 9 Shutdown Current vs. Temperature

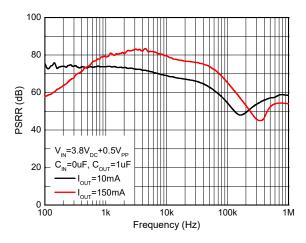


Figure 10 Dropout Voltage vs. Output Current

Figure 11 Output Current Limit and Short^[1]

[1] For the overload condition, the output current is limited since the LDO operates in the OCL mode. With the load increase in the process, the output voltage reduces while the output current is always around ICL. If Vout is lower than 0.2 V, the LDO enters the short mode and the output current equals to the short current Ishort.

Jul, 2022_V1.3

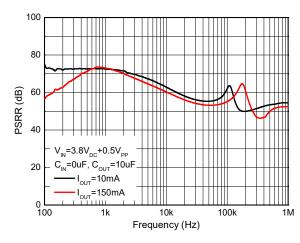
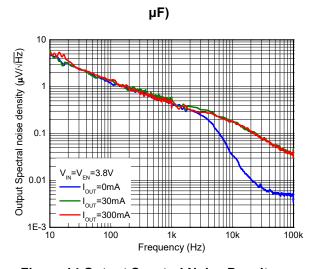



Figure 12 PSRR vs. Frequency (V_{DROP}=1 V, C_{OUT}=1

Figure 13 PSRR vs. Frequency (V_{DROP}=1 V, C_{OUT}=10

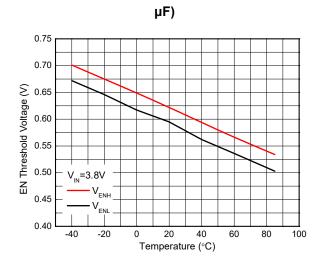
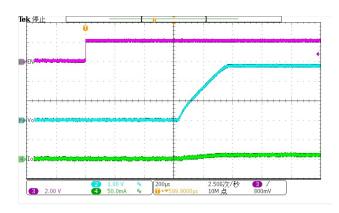



Figure 14 Output Spectral Noise Density vs.

Frequency

Figure 15 EN Threshold Voltage vs. Temperature

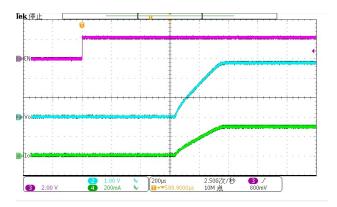
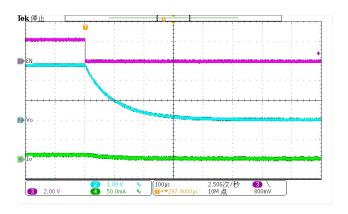



Figure 16 Soft Start-Up from EN (IOUT=10 mA)

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001 www.ovt.com

Figure 17 Soft Start-Up from EN (I_{OUT}=300 mA)

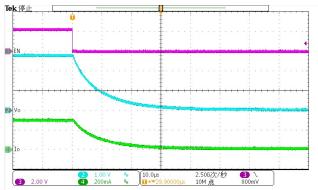
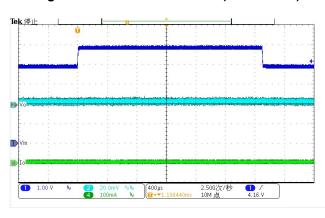



Figure 18 Shutdown from EN (I_{OUT}=10 mA)

Figure 19 Shutdown from EN (I_{OUT}=300 mA)

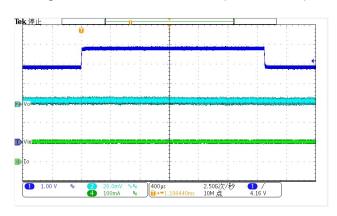
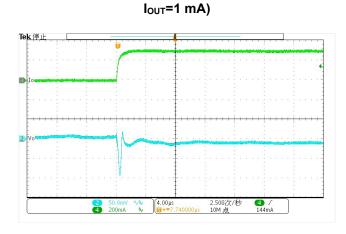



Figure 20 Line Transient (V_{IN}=3.8 V~4.8 V in 10 us,

Figure 21 Line Transient (V_{IN}=3.8 V~4.8 V in 10 us,

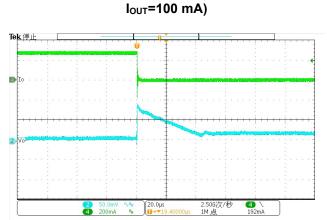


Figure 22 Load Transient (V_{IN} =3.8 V, I_{OUT} =1 mA to 0.3 A in 1 us)

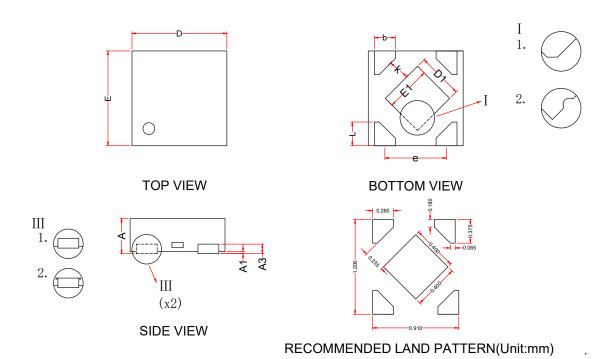
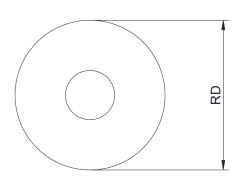

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Figure 23 Load Transient (V_{IN} =3.8 V, I_{OUT} =0.3 A to 1 mA in 1 us)

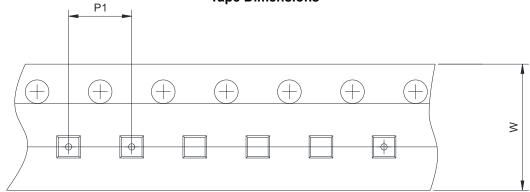
Package Outline Dimensions

DFN1x1-4L

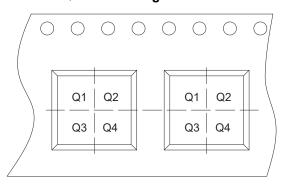
Complete	Di	mensions in Millim	eters		
Symbol	Min.	Тур.	Max.		
A	0.32	0.37	0.40		
A1	-	-	0.05		
A3	0.13 Ref.				
b	0.17	0.22	0.28		
L	0.20	0.25	0.30		
D	0.95	1.00	1.05		
Е	0.95	1.00	1.05		
D1	0.43	0.48	0.53		
E1	0.43	0.48	0.53		
K	0.15	-	-		
е	0.65BSC				


Jul, 2022_V1.3

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001



Tape and Reel Information


Reel Dimensions

Tape Dimensions

Quadrant Assignments for PIN1 Orientation in the Tape

User Direction of Feed

RD	Reel dimension	₹ 7inch	13inch		
W	Overall width of the carrier tape	₹ 8mm	12mm	16mm	
P1	Pitch between successive cavity centers	✓ 2mm	4mm	8mm	
Pin1	Pin1 quadrant	₹ Q1	□ Q2	□ Q3	Q4

12